Принцип работы телевидения физика. Принцип работы телевидения

Телевизионное изображение формируется на экране приемного уст­ройства и предназначено для рассматривания его глазом. Получателем ве­щательной телевизионной информации является зритель, наблюдатель; по­этому параметры и характеристики телевизионной системы должны выби­раться из условий ее согласования со свойствами и характеристиками зри­тельной системы человека.

Первый основной принцип телевидения заключается в разбивке изо­бражения на отдельные элементы и поэлементной передаче всего изображе­ния. Одновременная передача сигналов всех элементов неприемлема, так как это потребует такого количества линий связи между передатчиком и приемником, сколько элементов изображения, что исключает возможность практического осуществления.

Проблему каналов связи решает второй основной принцип, на котором базируется телевидение, - это последовательная во времени передача по ка­налу связи информации о яркости элементов (Рисунок 2.1). Этот принцип называется раз­верткой . Возможность последовательной передачи телевизионного изобра­жения по одному каналу связи базируется на явлении инерционности зре­ния. Инерционностью зрения называется способность зрительного аппарата сохранять зрительное ощущение в течение некоторого времени после пре­кращения его воздействия. Инерционность проявляется в том, что мель­кающий источник света при высокой частоте мельканий кажется непрерыв­но светящимся. Поэтому при достаточно высокой частоте передачи мель­кающих сигналов они будут казаться зрительному аппарату человека непре­рывно светящимися.

Разверткой изображения называется перемещение развертывающего элемента в процессе анализа или синтеза изображения по определенному периодическому закону (Рисунок 2.2). Оптическое изображение сначала фотоэлектриче­ским преобразователем в виде электронно-лучевой трубки или твердотель­ной передающей матрицы превращается в электрический сигнал, мгновен­ные значения которого пропорциональны яркости предаваемых участков изображения, - видеосигнал. В ТВ приемнике электрический сигнал снова превращается в оптическое изображение с помощью электронно - оптического преобразователя в виде кинескопа или с помощью плоской матрицы светоизлучающих элементов.

Телевизионное изображение, получаемое за период кадра (ТВ кадр), состоит из совокупности элементов - минимальных площадок, различаемых и воспроизводимых ТВ системой. Используются процессы последователь­ного во времени преобразования цвета или яркости элементов изображения объектов в электрические сигналы и электрических сигналов в цвет или яр­кость элементов ТВ изображения.

В ТВ вещании используется наиболее простой для реализации закон развертки - линейно-строчная периодическая развертка, когда разложение изображения осуществляется с постоянной скоростью слева направо, про­черчивая строку изображения (прямой ход строчной развертки), и одновре­менно сверху вниз (прямой ход кадровой развертки). Быстрый возврат развертывающего элемента справа налево и снизу вверх происходит во вре­мя обратных ходов разверток; сумма времени прямого и времени обратного ходов составляет период развертки, причем период строчной развертки на­много меньше периода кадровой.

Рисунок 2.1. Поочередная передача изображений

Рисунок, образуемый обегающим электронным или световым лучом на поверхности экрана или мишени электронно-лучевого прибора, называют ТВ растром.

Развертка, при которой все строки растра развертываются за один пе­риод вертикальной развертки в непрерывной последовательности, называется построчной (прогрессивной) разверткой .

Элементы на передаче и приеме будут иметь одинаковые координаты в пределах растров, если по ТВ каналу будет передаваться не только видео­сигнал, но и дополнительный (служебный) сигнал - сигнал синхронизации приемника, содержащий и импульсы строчной и кадровой частот. Обычно оба эти сигнала совмещаются, а в приемнике разделяются по уровню. Со­вмещенный сигнал называют полным сигналом яркости .

Согласно ГОСТу 7845-92 за время активной части кадра передается 576 строк, а всего в кадре размещено 625 строк. Для устранения мельканий изображения частота кадров равна 50 Гц при построчной развертке и 25 Гц при чересстрочной.

Рисунок 2.2. Принцип развёртки изображений

Видеоинформация передается только во время активной части строки и кадра.

Выводы

Информационные технологии вобрали в себя все достижения электроники, физики, математики, информатики и экономики. Информационная насыщенность не только изменила мир, но и создала новые проблемы, которые необходимо решать. Без знаний о работе и устройстве технических средств эти проблемы не могут быть решены в полном объёме.

Вопросы для самоконтроля

1. Назовите технические средства массовой информации.

2. Охарактеризуйте такие средства как:

Телевидение (TV);

Вычислительная техника (компьютер);

Электронная почта;

Аппаратура записи и воспроизведения сигналов звука и изображения для производства, хранения и передачи ин­формации.

3. Дайте определение «компьютерные участок», « электронная почта», «телекс (телетекс)», «телефакс», « видеотекс», «интернет».

4. Что представляет собой цифровой сигнал?

5. Охарактеризуйте понятия «высокие скорости» « интеллектуальность» « мобильность» с позиции цифровой передачи сигнала.

6. Поясните основные принципы телевидения.


Тема 4. Телебачення як засіб масової інформації

Телебачення як вид ЗМІ

Історія телебачення

Новітня історія українського телебачення.

Основні професії в тележурналістиці.

Маніпулятивні можливості телебачення.

Телебачення як вид ЗМІ

Атрибутивні ознаки тележурналістики можуть бути подані так:

1. Телебачення поєднує переваги радіо й преси, звукову й відеоінформацію, досягає синтетичності, діючи на два головні людські відчуття: зору й слуху. Людина як біологічний індивід наділена лише п"ятьма відчуттями: зору, слуху, нюху, дотику й смаку. Але природа сприйняття людиною довкілля організована так, що на перші два відчуття припадає 95 % інформації, отримуваної із зовнішнього світу, а на решту три відчуття - лише 5 %. Таким чином, синтезувавши зір і слух, телебачення домоглося максимальної мобілізації інформативних можливостей людини. На цьому ґрунтується й величезний вплив телебачення на глядацьку аудиторію.

2. Телебачення досягає могутнього ефекту присутності глядача на місці події. Недарма існує приказка: краще один раз побачити, ніж сто разів почути. В її основі думка про те, що жоден словесний опис не може передати автентичної картини дійсності, у ньому завжди міститиметься велика частка авторської суб"єктивності. Сучасні автори, які працюють у галузі філософії мови, вважають, що мова - це спосіб інтерпретації світу.

Створюючи ефект присутності глядача на місці події, тележурна-лістика виступає тим самим найбільш правдивим, адекватним інформаційним джерелом. За допомогою телеекрана індивід ніби сам бере участь у події, спостерігає за фактами і явищами, на підставі власних спостережень будує висновки, а тому й довіряє найбільше телебаченню.

3. Окрім семантики виголошуваного в ефір тексту та його інтонаційного забарвлення (дані можливості надає й радіомовлення), тележурналістика використовує й такі засоби донесення змісту висловлювання, як міміка, жест, погляд, поза, розташування тележурналіста в кадрі. Глядач бачить на екрані живу особу, яка розмовляє з багатомільйонною аудиторією, але звертається до кожного конкретного індивіда, приходить у його власний дім. Учасники телепередачі перетворюються таким чином на присутніх перед глядачем його співрозмовників, використовуючи для аргументації своїх положень усі наявні аспекти логічного й психологічного впливу: семантику висловлювання, інтонацію, міміку, жест і т. д. Це також одна з причин особливої ефективності тележурналістики.

4. Сила телебачення - в аудіовізуальному синтезі, під яким розуміється використання майстерного монтажу, чергування близького й далекого планів, темпоритмічної організації матеріалів, змістовного текстового ряду, вмілого коментування зорових образів ведучим. Сучасна тележурналістка - це не розтягнуті пейзажі чи голови мовців у нерухомому кадрі, а динамічне чергування картин дійсності з роз"ясненнями журналіста, виголошуваного ним енергійного тексту і музичного й шумового супроводу, яскравих виразних репортажних зйомок на місцях і влучного коментарю спеціаліста зі студії.

5. Сприяє глибокому впливу телебачення на глядачів сприймання телепрограм у малому колективі, в родині, у домашніх умовах, де люди почувають себе цілком вільно, часто не переривають розмови біля екрана телевізора, можуть дозволити собі безбоязно обмінюватися репліками з приводу побаченого, коментувати картинку оператора й текст ведучого телепрограми.

6. Особливістю цього виду електронних ЗМІ є й те, що кількість глядачів його істотно коливається, масова аудиторія з"являється в телебачення тільки увечері, коли після ро бочого дня люди повернулися додому. Але це по-справжньому масова аудиторія. У цьому відношенні телебачення цілком справедливо називають зброєю масового ураження. Преса позбавлена відчутних коливань у розмірі аудиторії, вона завжди має аудиторію, що вимірюється тиражем видання. З тележурналісткою справа виглядає інакше: тут існує поняття особливо престижного ефірного часу: це вечірні години, коли переважна більшість громадян опиняється біля телеекранів, шукаючи хто поважної інформації, хто відпочинку, хто розваг.

7. Послідовне розташування програм у тележурналістці вимагає поєднання інформаційної насиченості, поважних аналітичних програм з відпочинком, розважальними передачами. Свідомість окремого індивіда не може бути постійно налаштованою лише на споживання інформації, чи глибокі філософські теми, чи розважальні музичні передачі. Тому найкраще запропонувати людині в певних оптимальних пропорціях поєднання на одному каналі різноманітних товарів інформаційного ринку. Від задоволення різноманітних потреб глядача в інформації залежатиме в кінцевому рахунку успіх колективу тележурналістів.

Негативні сторони телебачення ті ж, що й у радіомовлення (див. п. п. 1-4), що дозволяє не говорити про одне й те саме двічі.

На особливу роль у сучасному світовому інформаційному просторі висунулася комп"ютерна мережа Інтернет. Це спонукає говорити про Інтернет окремо, вбачаючи в ньому новий тип журналізму в цілому. Тут доцільно навести думку авторів підручника "Основи масово-інформаційної діяльності". "Саме з допомогою "всесвітньої павутини", пишуть вони, - світ стає свідком народження нового виду засобів масової комунікації, який займе в ХХІ ст. особливе місце серед традиційних ЗМІ, як телебачення, преса, радіо, і що з розвитком технологій відкриє для них нові небачені до цих пір можливості" .

Телевидение, как одно из средств массовой информации, является наиболее массовым из СМИ, охватывая и те слои населения, которые остаются за рамками влияния других СМИ. Эта способность телевидения объясняется его спецификой как средства создания, передачи и восприятия информации. Во-первых, эта специфика заключается в способности электромагнитных колебаний, несущих телевизионный сигнал, проникать в любую точку пространства в зоне действия передатчика. С появлением спутникового телевидения последнее ограничение отпало, еще более усилив позиции ТВ. Во-вторых, специфика ТВ (в отличие от радио) в его экранности, то есть, в передаче информации посредством движущегося изображения, сопровождаемого звуком. Именно экранность обеспечивает непосредственно-чувственное восприятие телевизионных образов, а значит и их доступность для самой широкой аудитории. В отличие, например, от радио, телевизионная информация доносится до зрителя в двух плоскостях: вербальной (словесной) и невербальной, зрительной. Звукозрительный характер телевизионной коммуникации усиливается персонификацией информации, телевидение в большом числе случаев подразумевает личностные контакты автора или ведущего и участников передачи с аудиторией. Персонификация телеинформации уже давно утвердилась во всем мире как принцип вещания, как сущностное отличие телевизионной журналистики от других ее родов. В третьих, телевидение способно сообщить в звукозрительной форме о действии в момент его свершения. Одновременность события и его отображения на телевизионном экране (симультантность) является едва ли не самым уникальным свойством телевидения.

Симультантность присутствует в телевизионных передачах не постоянно, однако, имеет большое значение для психологии зрительского восприятия, как бы напоминая о достоверности действия, происходящего на экране. Симультантность, создающая эффект присутствия зрителя на месте событий, придает, как уже отмечалось выше, телевизионному сообщению особую достоверность, документальность, реалистичность, что обеспечивает исключительность в решении информационных задач телевидением как одной из разновидностей СМИ. Именно от этих специфических свойств телевидения зависят, в свою очередь, многие функциональные, структурные, выразительные, эстетические особенности и возможности телевидения, занявшего по мере развития и совершенствования своей технической базы особое место в системе средств массовой коммуникации. Наличие возможностей определяет и те функции, которые выполняет телевидение в современном мире.

ИНФОРМАЦИОННАЯ ФУНКЦИЯ

Назначение всех средств массовой информации – удовлетворение информационных потребностей человека, общества, государства. Это относится и к телевидению, которое отличается лишь тем, что способно распространять информацию полнее, быстрее, достовернее и эмоционально более насыщенно, нежели радио или печатные СМИ. Говоря об информационной функции телевидения, необходимо, вероятно, ограничиться узким и конкретным толкованием самого понятия «информация». Регулярное получение людьми экономической, политической, социальной и культурной информации в современном мире стало нормой жизни. Отсюда проистекает тот факт, что информационные программы являются опорными точками сетки вещания любой телекомпании, а все остальные передачи располагаются в интервалах между выпусками новостей. Особого рассмотрения требует акцентированное обращение телеинформации к отклоняющимся от нормы событиям: вооруженным конфликтам, катастрофам, природным катаклизмам и т.д. Можно объяснить это явление погоней за сенсационными материалами ради повышения зрительского интереса, поднятия рейтинга и, соответственно, прибыльности вещающей компании. Однако, признавая этот фактор, необходимо отметить и другое. Для любой системы - от технического устройства до биологического организма и человеческого общества важна информация именно об отклонениях от нормы. Машина сообщает об этом включением соответствующего индикатора, живой организм – болевым ощущением. Стремление отражать ненормативные явления в жизни общества можно считать таким «индикатором», «болевым ощущением» социума. Эту информативную функцию и выполняют телевизионные выпуски новостей. Это общемировая практика, которая не допускает подмены информации агитацией. Другое дело – найти необходимую тональность для сообщений о катастрофах и войнах. Мировой стандарт, проверенный десятилетиями: выпуск новостей, невзирая на обилие новостей плохих, не должен оставлять у зрителей настроения подавленности и безысходности. Все хорошо в меру. Для оперативного освещения событий такого рода, о которых, естественно, ничего не известно заранее, необходимы три условия: профессионализм сотрудников, техническая оснащенность телекомпании и высокий уровень организованности.

КУЛЬТУРНО-ПРОСВЕТИТЕЛЬСКАЯ ФУНКЦИЯ

Любая телепередача в какой-то мере приобщает человека к культуре. Даже информационные программы демонстрируют зрителю участников событий, ведущих, их стиль общения, степень грамотности и т.д. Все это влияет на зрительские установки и напрямую, и как отрицательный пример. В большей степени эталонно воспринимаются ведущие программ. Этот факт, кстати, был и остается поводом для тревоги телевизионных критиков, так как появление множества телеканалов разного уровня породило, в свою очередь, обилие малокультурных и недостаточно грамотных ведущих. Естественно, что культурно-просветительскую функцию ТВ выполняет трансляция любых культурных мероприятий: спектаклей, концертов, кино- и телефильмов. Говоря о приобщении аудитории к искусству посредством телевидения, нельзя, конечно, не отметить некую «неполноценность» такого знакомства с прекрасным, однако, следует признать: для огромного множества людей это едва ли не единственная возможность познакомиться с теми или иными произведениями искусства. В культурно-просветительских программах очень часто присутствует элемент дидактики, назидательности. Задача авторов – сделать его ненавязчивым, предельно деликатным.

ИНТЕГРАТИВНАЯ ФУНКЦИЯ

Все СМИ поддерживают нормальное функционирование общества, на которое распространяется их воздействие. Определенная общность людей, составляющих аудиторию телевизионного СМИ, складывается уже из того факта, что некое количество людей сознательно смотрит ту или иную программу. Задача телевидения - развитие этого ощущения сопричастности каждого ко всем. Усиление общих для аудитории ценностных установок (на общечеловеческие, общенациональные и др. системы ценностей), как и противодействие деструктивным в отношении общества тенденциям, должны быть доминантой ТВ, как и любого другого СМИ. И в этом смысле выполнение интегративной функции ТВ значительно усложняется там, где сложен состав зрительской аудитории: в национальном, конфессиональном отношении. Необходим также учет интересов различных социальных и возрастных групп.

СОЦИАЛЬНО-ПЕДАГОГИЧЕСКАЯ ИЛИ УПРАВЛЕНЧЕСКАЯ ФУНКЦИЯ

Выполнение этой функции предполагает прямую вовлеченность в ту или иную систему воздействия на население, на пропаганду определенного образа жизни с соответствующим набором политических, моральных и духовных ценностей. Степень этой вовлеченности и мера воздействия ТВ на аудиторию в плоскости выполнения этой функции зависят от той системы, в которой действует данное телевизионное СМИ. Если под системой подразумевается государство, то от характера данного государства, степени его демократичности и т.д. Впрочем, даже в самых демократических государствах телевидение в значительной части своих программ служит проводником государственной политики. Так, лозунгом Би-Би-Си, например, являются слова: «Сообщать. Поучать. Развлекать». Политика всегда первична, по отношению к пропаганде, которая ее обслуживает. Впрочем, в факте сотрудничества телевидения (или отдельно взятого журналиста) с государством нет ничего аморального: в том случае, если не аморально это государство. Наиболее очевидно управленческая функция ТВ может быть реализована в информационных и других общественно-политических программах. О ТВ говорят как о средстве контроля народа за действиями властей (говоря языком телевизионной терминологии - аудитории за системой). Особенно сильно подобное отношение к СМИ вообще и к ТВ в частности у населения постсоветских государств. Люди ждут реакции властей на критические выступления, касающиеся тех или иных явлений жизни, по инерции, доставшейся от советской системы, в то время как СМИ – лишь способ донести информацию об этих явлениях до своей аудитории.

Дальнейшее зависит уже не от СМИ, выпадающего из цепочки, где остаются лишь власть и народ. Так что, идеал беспристрастности и независимости обречен оставаться лишь идеалом. Кто платит – тот и заказывает музыку. Управленческая функция телевидения (как и любого другого СМИ) не обязательно действует в схеме «государство – СМИ – народ». Телевизионным средством массовой информации могут управлять те или иные партийные, финансово-олигархические, региональные и т.п. группировки.

ОРГАНИЗАТОРСКАЯ ФУНКЦИЯ

Организаторская функция ТВ возникает в том случае, когда телевидение само становится инициатором той или иной общественной акции. Примером осуществления этой функции могут быть, скажем, многочасовые телемарафоны с благотворительными целями. Следует четко отличать ее от функции управленческой, где телевидение служит скорее инструментом.

ОБРАЗОВАТЕЛЬНАЯ ФУНКЦИЯ

К собственно журналистике отношения эта функция практически не имеет. Под образовательной функцией ТВ понимается трансляция учебных циклов в помощь людям, получающим то или иное образование (например, дидактические передачи для изучающих языки, для поступающих в вузы и т.д.).

РЕКРЕАТИВНАЯ ФУНКЦИЯ

Также мало связана с журналистикой. Рекреация - это отдых, расслабление, восстановление сил. Журналисты могут принимать участие в создании развлекательных программ рекреативной направленности в качестве редакторов, ведущих.

История человечества содержит целую череду замечательных открытий и изобретений. Телевидение - т. е. передача звука и изображения на огромные расстояния, по праву занесены в этот список.

Какие же физические процессы лежат в основе передачи и воспроизведения телевизионного изображения? Кому мы обязаны рождению телевизора?

Как рождалось телевидение

Над созданием дальновидения трудились ученые разных стран на протяжении многих десятилетий. Но телевизор изобрели российские ученые: Б. Л. Розинг, В. К. Зворыкин и Григорий Оглоблинский.

Первыми шагами, приблизившими мир к передаче изображения на расстояние, было разложение изображения на отдельные элементы с помощью диска немецкого инженера Пауля Нипкова, а также открытие фотоэффекта немецким учёным Генрихом Герцем. Первые телевизоры, работавшие на основе диска Нипкова, были механическими.

В 1895 году человечество обогатилось двумя великими изобретениями - радио и кино. Это послужило толчком для поисков способа передачи изображения на расстояние.

…Эра электронного телевидения началась с 1911 года, когда российский инженер Борис Розинг получает патент на передачу изображения на расстояние с помощью сконструированной им электронно-лучевой трубки.

Переданное изображение представляло собой четыре белых полосы на черном фоне.

В 1925 году ученик Розинга Владимир Зворыкин демонстрирует созданный им полноценный электронный телевизор.

Но на дальнейшие исследования и выпуск телевизионных приёмников нужны были огромные деньги. Известный американский предприниматель российского происхождения Дэвид Сорнов сумел оценить это великое изобретение. Он вложил необходимую сумму для продолжения работ.

В 1929 году совместно с инженером Григорием Оглоблинским Зворыкин создает первую передающую трубку - иконоскоп.

А в 1936 году в лаборатории В. Зворыкина получил путёвку в жизнь первый электронный телевизор на лампах. Это был массивный деревянный ящик с экраном в 5 дюймов (12,7) см. Регулярное телевещание в России началось в 1939 году.

Постепенно ламповые модели вытеснялись полупроводниковыми, а затем всего одна микросхема стала заменять всю электронную начинку телевизора

Очень кратко об основных этапах работы телевидения

В современной телевизионной системе можно выделить 3 этапа, каждый из которых выполняет свою задачу:

  • преобразование изображения объекта в серию электрических импульсов, называемых видеосигналом (сигналом изображения);
  • передача видеосигнала к месту его приёма;
  • преобразование принятых электрических сигналов в оптическое изображение.

Как работает видеокамера

Производство телепрограмм начинается с работы передающей телевизионной камеры. Рассмотрим устройство и принцип работы такого устройства, разработанного Владимиром Зворыкиным еще в 1931 году.

Основной частью камеры (иконоскопа) является светочувствительная, мозаичная мишень. Именно на неё и проецируется изображение создаваемое объективом. Мишень покрыта мозаикой из нескольких миллионов изолированных серебряных крупинок, покрытых цезием.

Принцип работы иконоскопа основан на явлении внешнего фотоэффекта - выбивании электронов из вещества под действием падающего света. Падающий на экран свет, выбивает из этих крупинок электроны, количество которых зависит от яркости светового потока в данной точке экрана. Таким образом, на экране возникает невидимое для глаза электрическое изображение.

Здесь же в трубке имеется электронная пушка. Она создает электронный луч, который 25 раз в 1 секунду успевает «оббежать» мозаичный экран, считывая это изображение и создавая в электрической цепи ток, называемый сигналом изображения.

В современных камерах изображение фиксируется не на светочувствительной плёнке, а на цифровой матрице, состоящей из миллионов светочувствительных ячеек - пикселей. Свет, попадающий на ячейки, вырабатывает электрический сигнал. Причем, его величина пропорциональна интенсивности светового луча.

Для получения цветного изображения пиксели покрываются красным, синим и зеленым светофильтрами. В результате матрица фиксирует три изображения - красное, синее и зелёное. Их наложение и дает нам цветное изображение, фотографируемого объекта.

Как видеосигнал доходит до телевизора

Полученный видеосигнал имеет низкую частоту и не может распространяться на значительные расстояния. Поэтому в качестве несущей частоты используют высокочастотные э-м волны, модулированные (изменённые) видеосигналом. Они распространяются в эфире со скоростью 300 000 км/сек.

Телевидение работает на волнах метрового и дециметрового диапазона, которые могут распространяться только в пределах прямой видимости, т. е. не могут огибать земной шар. Поэтому для расширения зоны телевещания используют высокие телебашни с передающими антеннами, Так, Останкинская телебашня имеет высоту 540 метров.

С развитием спутникового и кабельного телевидения практическая значимость телебашен постепенно снижается.

Спутниковое телевидение осуществляется за счёт целого ряда спутников, расположенных над экватором. Наземная станция передает свои сигналы на спутник, который ретранслирует их на землю, охватывая достаточно обширную зону. Сеть таких спутников позволяет охватить телевещанием всю территорию Земли.

Кабельное телевидение предусматривает одну приёмную антенну, от которой телевизионные сигналы передаются к отдельным потребителям по специальному кабелю.

Как работает телевизор

Итак, в 1936 году в лаборатории В. Зворыкина был создан первый электронный телевизор с электроннолучевой трубкой (кинескопом). Конечно, с тех пор он претерпел много изменений, но все же рассмотрим, как происходит воспроизведение изображения в телевизоре с электроннолучевой трубкой.

Именно в этой стеклянной колбе и происходит превращение невидимого электронного сигнала в видимое изображение. В его узкой части расположена электронная пушка, а с противоположной стороны - экран, внутренняя поверхность которого покрыта люминофором. Пушка обстреливает это покрытие электронами. Количеством электронов управляет поступивший в приёмное устройство видеосигнал. Электроны, попадая на люминофор, вызывают его свечение. Яркость свечения зависит от количества электронов, попавших в данную точку. Совокупность точек разной светимости и создают картинку. Электронный луч обстреливает экран слева направо, строчка за строчкой, постепенно спускаясь вниз, всего 625 строк. Все это происходит с огромной скоростью. За 1 секунду электронный луч успевает нарисовать 25 статических картинок, которые мы воспринимаем как движущееся изображение.

Цветное телевидение появилось в 1954 году. Для создания всей гаммы цветов понадобилось 3 пушки - красная, синяя и зеленая. Экран, соответственно, снабдили тремя слоями люминофора соответствующих цветов. Обстрел красного люминофора из красной пушки создает красное изображение, из синей - синее и т. д. Их наложение создает всё многообразие цветов, соответствующих передаваемой картинке.

Почему телевизоры «похудели»

Описанные телевизионные приёмники с ЭЛ трубкой - это наше недавнее прошлое. На смену им пришли более изящные, плоские жидкокристаллические и плазменные модели. В ЖК телевизорах экраном служит тонкая матрица с огромной плотностью светящихся элементов (пикселей), позволяющих получить изображение хорошей чёткости.

Пиксели плазменного телевизора состоят из микроламп, заполненных газами 3-х видов. Их свечение и создает цветную картинку.

Цифровое и аналоговое телевидение

До недавних пор основным форматом телевидения был аналоговый формат. Однако телевидение всегда быстро реагировало на новые технологии. Поэтому последние годы видеотехника перешла на цифровой формат. Он обеспечивает более устойчивое и качественное изображение, а также чёткий звук. Появилась возможность передавать огромное количество телеканалов одновременно.

Полный переход на новый формат будет осуществлен к 2018 году. А пока можно пользоваться специальными приставками к старым телевизорам, и наслаждаться услугами цифрового телевидения.

Телевизионная аудитория самая многочисленная в мире. Ведь это не только способ развлечь себя, но и возможность обогащения кругозора, не выходя из дома. Особенное значение в этом плане играет интернет-телевидение, позволяющее пользователям выбирать пакет каналов по своим интересам и просматривать прошлые телевизионные программы.

Если это сообщение тебе пригодилось, буда рада видеть тебя

И слова "видение"), область науки, техники, культуры, связанная с передачей на расстояние изображений объектов и звукового сопровождения (речи, музыки) при помощи радиосигналов (эфирное телевидение) или электрических сигналов, передаваемых по проводам (кабельное телевидение). Принцип телевидения состоит в последовательном преобразовании во времени элементов изображения в электрические сигналы (анализ изображения), передаче этих сигналов по каналам связи в пункт приема и обратном их преобразовании в видимое изображение (синтез изображения). Зарождение телевидения относится к началу 20 в. Однако практическое освоение телевидения началось в начале 1930-х гг. после изобретения передающей телевизионной трубки и кинескопа. Исторически телевидение развивалось начиная с передачи только яркостной характеристики каждого элемента изображения (черно-белое телевидение). К началу 50-х гг. в США, России и затем в других странах были разработаны системы цветного телевидения электронного типа. В современных стандартных системах цветного телевидения (например, СЕКАМ , ПАЛ), совместимых с черно-белыми, передаются одновременно 2 вида сигналов: сигнал яркости, несущий информацию о яркости передаваемой сцены; сигнал цветности (образован двумя так называемыми цветоразностными сигналами), несущий информацию о ее цвете. В России телевизионное вещание осуществляется в диапазоне метровых (12 телевизионных каналов) и дециметровых (свыше 40 телевизионных каналов) волн; телевизионные программы практически полностью передаются в цветном изображении. В конце 80-х гг. разработаны системы телевидения высокой четкости (свыше 1000 строк вместо обычных 625); ведутся разработки систем цифрового телевидения, в которых передаваемый телевизионный сигнал представляет собой последовательность кодовых (цифровых) комбинаций электрических импульсов.

Современная энциклопедия . 2000 .

Синонимы :

Смотреть что такое "ТЕЛЕВИДЕНИЕ" в других словарях:

    Телевидение … Орфографический словарь-справочник

    Это когда люди, которым нечего делать, смотрят на людей, которые ничего не умеют делать. Фред Аллен Телевидение служит доказательством того, что люди готовы смотреть все что угодно, лишь бы не смотреть друг на друга. Энн Ландерс Телевидение… … Сводная энциклопедия афоризмов

    - (от теле... и слова видение) область науки, техники и культуры, связанная с передачей на расстояние изображений подвижных объектов при помощи радиоэлектронных устройств. В телевидении принят принцип последовательной передачи элементов… … Большой Энциклопедический словарь

    Область науки, техники и культуры, связанная с передачей на расстояние изображений подвижных и неподвижных объектов с помощью электрических сигналов, распространяющихся по каналу связи. Телевидение является средством распространения политической … Финансовый словарь

    Телевидение - (от теле... и слова “видение”), область науки, техники, культуры, связанная с передачей на расстояние изображений объектов и звукового сопровождения (речи, музыки) при помощи радиосигналов (эфирное телевидение) или электрических сигналов,… … Иллюстрированный энциклопедический словарь

    Область в науке и технике, связанная с передачей на расстояние изображений неподвижных и движущихся объектов и использующая радиоэлектронные устройства. Передача изображений представляет собой последовательность трёх физ. процессов:… … Физическая энциклопедия

    Телевизия, телевидка, голубой экран, телевизор, телемусоропровод, электронная пресса, тв, телевещание Словарь русских синонимов. телевидение голубой экран Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е.… … Словарь синонимов

    телевидение - Передача и получение на расстоянии изображений движущихся или неподвижных объектов электрическими средствами со звуковым сопровождением или без него. [ГОСТ 21879 88] Тематики телевидение, радиовещание, видео Обобщающие термины термины и… … Справочник технического переводчика

    ТЕЛЕВИДЕНИЕ, система, которая передает и принимает визуальные изображения с помощью РАДИОВОЛН или по КАБЕЛЮ. Телевизионная камера преобразует световые лучи (идущие от объекта) в электрические сигналы. Основа большинства телекамер ортикон,… … Научно-технический энциклопедический словарь

    ТЕЛЕВИДЕНИЕ, телевидения, мн. нет, ср. (неол. тех.). Видение на расстоянии при помощи электрических методов связи по проводам или по радио. см. теле…. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Книги

  • Телевидение , Н. К. Игнатьев. Москва, 1958 год. Государственное издательство литературы по вопросам связи и радио. Издательский переплет. Сохранность хорошая. Издание представляет собой учебноепособие для техникумов…

По физике

История создания и


Введение

Механическая развертка

В.К. Зворыкин

Кинескоп и Иконоскоп

Радиовизионный передатчик

Передачи BBS

Разработка телевидения в СССР

Перспективы развития телевидения

Список литературы


Введение

В настоящее время телевидение стало очень важным средством информации населения о событиях в стране и за рубежом, могучим средством воздействия на духовную жизнь общества.

Телевидением называется обширная область современной радиоэлектроники, занимающаяся вопросами передачи и приема изображений различных предметов на расстояние по электрическим каналам связи.

Первое время после своего появления телевидение использовалось в основном для телевизионного вещания, то есть для передачи населению известий о последних событиях в стране и мире. Подобная визуальная информация настолько привлекательна, интересна и пользуется всеобщим вниманием, что началось бурное распространение телевизионного вещания.

Телевизионное вещание стало неотъемлемым спутником нашей жизни. Для междугородной передачи телевизионных программ страна охвачена сетью радиорелейных, спутников и кабельных линей связи. В космическом пространстве работают спутники-ретрансляторы телевизионных программ позволяющие передавать программы телевидения в отдаленные районы страны, где установлены наземные приемные станции.

В современном телевидении можно выделить два в известной степени самостоятельных, направления: телевизионное вещание и прикладное телевидение.

Освоение космического пространства, начатое запуском в Советском Союзе 4 октября 1957 года искусственного спутника Земли, привело к возникновению и быстрому развитию особой области телевизионной техники – космического телевидения. Назначение телевизионной аппаратуры, используемой в космосе весьма, многообразно, однако оно быть сведено к следующим основным направлениям:

1. Передача изображения с космических кораблей и спутников для получения визуальной информации о поведении экипажа или аппаратуры, о ходе процесса стыковки космических кораблей и т.п.

2. Наблюдение с космических объектов за различными участками земной поверхности с целью осуществления научных исследований, метеорологии, картографии и т.п.

3. Получение изображения поверхности Луны, Марса, Венеры и других планет.

4. Ретрансляция телевизионных программ на большие расстояния помощью искусственных спутников Земли для охвата телевизионным вещанием больших территорий.

Телевидение, несомненно, следует отнести к одному из самых значительных достижений человеческого разума. Наука о телевидении и телевизионная техника представляет собой сложный комплекс сведений и технических решений из самых различных областей знаний – светотехника, световой (геометрической) и электронной оптики, учения о фотоэлектричестве, электровакуумной и импульсной техники, техники радио и проводной связи и других областей знаний.

В основе телевизионной передачи лежат три важнейших физических процесса:

1. Преобразование световой энергии оптического изображения в электрические сигналы. Для этого преобразования используют явление фотоэффекта открытого Г. Герцем в 1887 году и фундаментально исследованного в 1888 – 1890 годах профессором Московского университета А. Г. Столетовым.

2. Передача полученных электрических сигналов по каналам связи.

3. Обратное преобразование принятых электрических сигналов в оптическое изображение. Это преобразование впервые осуществил с помощью электронно-лучевой трубки преподаватель Петербургского технологического института Б. Л. Розинг (1907 – 1911 годах).

Таким образом, в изобретении и создании важнейших узлов телевизионных систем весьма большой вклад внесли русские ученые П. И. Бахметьев, Б. Л. Розинг, П. В. Шмаков, С. И. Катаев, а также американцы Ч. Дженкинс и В. К. Зворыкин, англичанин Дж. Л. Берд, немец Ф. Шретер, француз Р. Бартлеми, поляк П. Нипков и многие другие.

В октябре 1967 года телевизионное вещание перешло к новому этапу своего развития – начались регулярные передачи цветного телевидения.

Цветное изображение содержит значительно больше полезной информации, чем черно-белое. Цвет повышает художественную ценность изображения, уменьшает его отличие от оригинала, помогает зрителю полнее и быстрее воспринимать содержание изображения, повышает эмоциональность восприятия.

Цветное телевидение появилось, и начало развиваться, когда черно-белое телевидение уже получило широкое распространение – в эксплуатации у населения находились десятки миллионов черно-белых телевизоров. Поэтому перед разработчиками системы цветного телевидения была поставлена задача – создать такую систему, которая была бы совместимой с существующей системой черно-белого телевидения. То есть, чтобы имелась возможность приема передаваемых цветных передач в черно-белом виде существующими черно-белыми телевизорами и наоборот черно-белые программы принимать цветными телевизорами естественно в черно-белом виде.

В процессе решения поставленной задачи было предложено около трех десятков различных систем цветного телевидения. Однако были стандартизованы и получили практическое применение только три системы:

1. NTSC (National Television System Committee – национальный комитет телевизионной системы).

2. PAL (Phase Alternation Line – построчная перемена фазы).

3. CEKAM (от французского слова Secam-Sequence de Couleurs Avec Memoire – последовательная передача цветов с запоминанием).


Открытие Столетова. Фотоэффект и фотоэлемент

Преобразование оптического сигнала в электрический основывается на явлении фотоэффекта. Впервые прямое влияние света на электричество было обнаружено немецким физиком Г. Герцем во время его опытов с электроискровыми вибраторами. Герц установил, что заряженный проводник, будучи освещен ультрафиолетовыми лучами, быстро теряет свой заряд, а электрическая искра возникает в искровом промежутке при меньшей разности потенциалов. Замеченное явление было описано Герцем в его статьях 1887-1888 годов, но оставлено им без объяснения, так как физическую природу его он не знал. Не сумели правильно объяснить действие света на заряды и немецкий физик Гальвакс, и итальянский физик Риги, и английский физик Лодж, который, демонстрируя в 1894 году опыты Герца в своей знаменитой лекции «Творение Герца», лишь предположил химическую природу явления. И это неудивительно: электрон будет открыт Джозефом Джоном Томсоном лишь в 1897 году, а без упоминания об электроне объяснить фотоэффект невозможно.

Однако 26 февраля 1888 года заслужено считается одним из замечательнейших дней в истории науки и техники и, в частности, телевидения. В этот день великий русский ученый Александр Григорьевич Столетов (1839-1896) блестяще осуществил опыт, наглядно продемонстрировавший внешний фотоэффект и показавший истинную природу и характер влияния света на электричество.

Первые опыты со светом А.Г. Столетов проводил с обычным электроскопом. Освещая электрической дугой Петрова цинковую пластину, заряженную отрицательно и соединенную с электроскопом, он обнаружил, что заряд быстро исчезал. Положительный же заряд не уничтожался, вопреки имевшемуся утверждению Риги.

Для постановки точных опытов Столетов создал экспериментальный прибор, ставший прообразом современных фотоэлементов.

Экспериментальный прибор Столетова

Прибор состоял из двух плоскопараллельных дисков, один из которых был сетчатый и пропускал световые лучи. К дискам подводилось напряжение от 0 до 250В, причем к сплошному диску подключался отрицательный полюс батареи. При освещении сплошного диска ультрафиолетовым светом включенный в цепь чувствительный гальванометр отмечал протекание тока, несмотря на наличие воздуха между дисками. Продолжая опыты, А. Г. Столетов установил зависимость фототока от величины напряжения батареи и интенсивности светового пучка. Дальнейшие работы привели к созданию первого в мире фотоэлемента, представлявшего собой стеклянный баллон с кварцевым окном для пропускания ультрафиолетовых лучей. Внутрь баллона помещались электроды, один из которых был чувствителен к свету, газ откачивался. Современные фотоэлементы отличаются от первого лишь конструкцией электродов и их структурой.

Фотоэффект - явление вырывания электронов с поверхности вещества под действием света - был назван А.Г. Столетовым актиноэлектрическим разрядом. Электронная природа фотоэффекта была показана в 1899 году Дж. Дж. Томсоном и в 1900 году Ленардом, а полное объяснение было дано лишь в 1905 году А. Эйнштейном на основе квантовой теории. Сам же чувствительный к свету фотоэлемент был назван современниками «электрическим глазом».

Как развитие фотоэлемента в 1934 году советским инженером Кубецким и, независимо, американцем Фарнсвортом был сконструирован фотоэлектронный умножитель (ФЭУ), работа которого основана на использовании вторичных электронов, выбиваемых с анодов прибора вначале светом, а затем падающими на аноды первичными электронами. Таким образом, ФЭУ сочетает в себе фотоэлемент и усилитель с коэффициентом усиления в несколько миллионов единиц.

От «электрического глаза» до современного телевизора огромный путь, на котором нужно было решить три задачи: преобразовать изображение в последовательность электрических сигналов, передать их на большое расстояние и сделать обратное преобразование в приемном устройстве. Для передачи сигналов на большие расстояния идеально подошло радио, достигшее в 20 веке высокого уровня развития, а вот по созданию преобразовательных систем путь был пройден длинный и сложный.

Принцип отображения изображения

Шведскому химику Йёнсу Якобу Берцелиусу, открывшему в 1817 году элемент селен, и в голову не могло прийти, что его открытие станет первой вехой на пути к телевидению. Между тем, это именно так: спустя 50 лет было замечено особое свойство селена и некоторых других материалов изменять свое электрическое сопротивление при освещении. Чем ярче свет, падающий на селеновую пластинку, тем легче она проводит ток.

Если из маленьких кусочков селена сделать мозаику, соединить проводами каждый кусочек с маленькой лампочкой, спроецировать на мозаику изображение и пустить по проводам ток, то лампочки, соединенные с более освещенными кусочками мозаики, будут гореть ярче, а соединенные с затемненными участками - тусклее. Получим изображение, удаленное от оригинала на длину проводов. Впервые такое решение предложил американец Джордж Кэрри в 1880 году, но оно никогда не было осуществлено: уж больно громоздким было бы сооружение при более или менее значительном количестве элементов мозаики. Нужно было искать какой-то другой путь.

Еще в 1833 году бельгийский физик Жозеф Плато наклеил на периферию диска рисунки, запечатлевшие последовательные позы танцующей балерины, и стал вращать диск перед окошком, в котором помещалось лишь одно изображение. Когда диск вращался с какой-то определенной скоростью, зритель видел в окошке балерину, плавно исполнявшую свой танец. Так была открыта важная особенность человеческого зрения - его инерционность, то есть свойство "видеть" какое-то короткое время изображение, когда его уже на самом деле не существовало: предыдущее изображение балерины "сцеплялось" с последующим без зазора, глаз не успевал заметить промежутка между ними.

Инерционность зрения использовали создатели кинематографа: сидя в кинотеатре, мы не замечаем, что на экране каждую секунду сменяют друг друга 24 неподвижных изображений, а напряженно следим за погоней или сочувствуем страданиям любимой актрисы. А для того, чтобы на экране все было так, как в жизни, нужно, чтобы съемка происходила с той же скоростью 24 кадра в секунду.

Механическая развертка

Схема построчной развертки

Чтобы выйти из тупика, изобретатели, работавшие над созданием "дальновидения", тоже воспользовались инерционностью зрения, но пошли еще дальше, применив принцип "развертывания" изображения.

Представьте себе, что вы сидите перед экраном в том же зале, но на экран падает не тот широкий пучок света, который несет изображение кадра целиком, а тонкий луч, который с огромной скоростью пробегает по экрану так же, как взгляд наших глаз пробегает страницу книги, строчку за строчкой. Луч все время меняет свою яркость: в одних местах экрана светлеет, в других темнеет, и из-за инерционности зрения мы увидим то же, что и в кино: изображение во весь экран. А если скорость пробегания луча по экрану намного больше, чем скорость смены кадров, эффект движения тоже сохранится.

Вырисовывалась такая схема телепередачи: изображение оптически проецируется на селеновую пластинку, но не все сразу, а лучом построчно; через пластинку проходит ток, который пульсирует в соответствии с изменением освещенности пластинки; пульсирующий ток передается на источник света, яркость которого меняется при пульсации тока; луч от этого источника «бегает» по экрану с той же скоростью и по такому же шаблону, что и луч, "развертывающий" изображение-оригинал.

Преимущества такой схемы были очевидны, остановка была за малым: перейти от идеи к ее реальному воплощению. В 1884 году немецкий инженер (вернее, будущий инженер - тогда он был еще студентом) Пауль Нипков запатентовал устройство «электрический телескоп», в котором для «развертывания» изображения были применены диски с отверстиями, расположенными по спирали. При вращении диска отверстие у периферии пробегало верхнюю «строчку» изображения, следующее отверстие, расположенное чуть ближе к центру, - вторую строчку и т. д. За один оборот диска «разворачивалось» все изображение.

Когда Пауль Нипков сделал свое открытие, он был студентом, совсем молодым человеком. Патент на изобретение ему удалось получить не сразу. По окончании университета он начал работать в управлении железных дорог, где занимался конструированием сигнальных систем. И многие из его изобретений в этой области также были запатентованы, прежде всего - системы аварийной сигнализации. Но главным его открытием, безусловно, оказалось, как потом называли, механическое телевидение.

Принцип сканирования с помощью диска Нипкова стал основой для телевизионной системы шотландского ученого Джона Бэрда, который в 1926 году впервые продемонстрировал публике передачу изображения и воспроизведения его на экране. Телевизионная система шотландского ученого Джона Бэрда очень отличалась от современного телевидения. Она была основана на механической системе сканирования с использованием металлического диска с отверстиями - изобретения Пауля Нипкова. Достоинство системы Бэрда заключалось в том, что из-за очень малой разрешающей способности экрана можно было передавать телевизионное изображение, используя обычную средневолновую радиосистему. Бэрд мог передавать изображение, используя радиосистему компании BBS. И все это происходило в середине 20-х годов.

Бэрд первым в мире продемонстрировал телевизионное изображение, которое, однако, было размером примерно с почтовую марку. Оно было очень слабым и мерцающим, с очень невысокой разрешающей способностью. Многие ученые, знакомые с системой Бэрда, отмечали, что ее нельзя было усовершенствовать в рамках самой этой системы без изменения фундаментальных технологических принципов работы телевидения.

Любопытно, что Бэйрд назвал свой прибор «телевизором», и это воистину был телевизор (в смысле - передатчик изображения), а не современный «телеприемник». Бэйрд продемонстрировал свой прибор в одном из лондонских универмагов в Сохо. Но изобретателю не удалось добиться передачи полутонов, и на экране были видны лишь силуэты вместо лиц. В 1926 году неутомимый шотландец сделал повторную попытку - на сей раз публика, присутствовавшая на первом публичном телесеансе в истории, была потрясена. Спустя еще два года Бэйрд впервые создал действующую модель цветного телевизора - за 30 лет до его широкого практического использования (в 1929 году экспериментальная телевизионная передача в цвете была проведена и сотрудниками американской компании Bell).

Диски Нипкова оказались удивительно живучими: они использовались в ранних телевизионных передачах вплоть до начала 30-х годов. В дисках было 30 отверстий, что соответствовало 30 строкам развертки, а для того, чтобы получить четкое изображение, необходимо иметь в 20 раз больше строк. Поскольку при этом диск увеличивался до совершенно неприемлемых размеров, все отчетливей проявлялась тупиковасть направления, базировавшегося на механической развертке изображения.

Изобретение электронной развертки

Между тем еще в 1907 году российский ученый Борис Львович Розинг предложил использовать для развертки катодно-лучевую трубку, изобретенную за 10 лет до этого немецким физиком Карлом Брауном и применявшуюся в осциллографах. Невесомый электронный луч в этой трубке можно было заставить «пробегать» по «строчкам» изображения с огромной скоростью. Будучи преподавателем Петербургского Технологического института, Борис Львович Розинг запатентовал систему «катодной телескопии», предложив для преобразования электрических сигналов в видимое изображение электронно-лучевую трубку. 9 мая 1911 года Розинг продемонстрировал свое изобретение коллегам и вскоре был удостоен Золотой медали Российского технического общества. Историки телевидения, в том числе и американские, единодушно утверждают, что патент Розинга сыграл основополагающую роль в создании современного телевидения, а его приоритет признан во всем мире.

Принцип работы катодной трубки Розинга стал основой для изобретения более совершенных устройств передачи изображений. В этой трубке вместо механического диска, который, как предвидел Розинг, не мог позволить увеличить качество изображения, то есть разрешение или количество строк на экране, использовался электронный луч (или электронный пучок), который направлялся системой электродов – катодов, отклоняющих электронный пучок на нужное расстояние. Что позволяло засветить лучом мишень с большей точностью и за меньший промежуток времени.

Выдающийся ученый, профессор Розинг разделил участь многих замечательных российских интеллигентов: в 1931 году во время очередной сталинской «чистки» он был арестован и выслан на 3 года в Архангельск, но не дожил до окончания срока и умер в 1933 году от кровоизлияния в мозг. Ему не удалось довести до конца задуманное. Это сделал в Соединенных Штатах его ученик Владимир Зворыкин.


Схема трубки Розинга В.К. Зворыкин

Идея создания телевизора, в котором изображение будет «рисоваться» электронным лучом, возникла у Зворыкина уже во время учебы в Петербургском технологическим институте. Окончил его Владимир Зворыкин в 1912 году, а спустя два года началась Первая мировая война, и молодому радиоспециалисту пришлось надеть военную форму. После Октябрьской революции Зворыкину тоже было не до научных опытов: ему, как бывшему белому офицеру, грозил арест. В 1918 году В. К. Зворыкин уехал из страны, а в 1919 году поселился в США.

Только спустя год после приезда в Америку Зворыкин был принят на работу в фирму Westinghouse Electric. В 1923 году новый сотрудник собрал, весьма далекий от совершенства образец системы электронного телевидения. Однако убедить русского инженера в бесперспективности электронного телевидения оказалось невозможно. Каждый день до позднего вечера он упорно трудился в лаборатории над совершенствованием своего изобретения.

В 1929 году Зворыкин перешел в «Радио корпорацию Америки» и здесь его идеи нашли понимание и необходимую финансовую поддержку. С помощью сотрудников талантливый ученый изготовил катод со сложной фотомозаичной структурой, нашел способ усиления малых токов, возникающих миниатюрных фотоэлементах, решил множество других технических проблем. В результате кропотливых экспериментов в 1931 году была создана работоспособная приемная телевизионная трубка – иконоскоп. Вскоре компания наладила серийное производство аппаратуры, и в 1936 году в США начались первые телевизионные передачи.

Кинескоп и Иконоскоп

Америка до сих пор спорит о том, кого считать "отцом телевидения", и многие полагают, что это звание вполне заслужил Дэвид Сарнов. Он предложил Зворыкину перейти в RCA и, когда тот согласился, создал ему прекрасные условия для работы, назначив его руководителем исследовательской лаборатории. Генеральный менеджер, а через год - президент RCA, Сарнов регулярно наведывался в лабораторию Зворыкина в Нью-Джерси, и не как босс, а как человек, способный работать рядом с исследователями.


Кинескоп Зворыкина

Зворыкинская приемная трубка – кинескоп – работала удовлетворительно, а вот с передающей трубкой были проблемы. Трудность состояла в том, что при развертке передаваемого изображения свет воздействует на светочувствительный слой очень кратковременно - миллионные доли секунды. Возбуждаемый при этом заряд оказывается ничтожно малым, усилить его до величины, необходимой для передачи, было чрезвычайно трудно. Зворыкин задался целью создать трубку с накоплением заряда, и в 1931 году такая трубка была создана.

В этом Зворыкину помог еще один эмигрант, Григорий Оглоблинский, работавший над той же проблемой в Париже. Зворыкин пригласил его в Америку, и они вместе довели до ума идею передающего электронно-лучевого прибора с накоплением электрического заряда на мозаичных светочувствительных мишенях. Изобретатель назвал ее "иконоскопом", от греческих слов "икон" – "образ" и "скоп" – "видеть". Иконоскоп и кинескоп стали основными узлами работоспособной электронной системы телевидения.

Изобретение «анализатора изображения». Файло Фарнсуорт

В это же время в Сан-Франциско над электронным телевидением работал другой американский изобретатель, которого звали Файло Тэйлор Фарнсуорт. Он родился в 1906 году в Юте в семье мормонов и еще в детстве решил стать изобретателем. Он мечтал о том, чтобы так же, как звук, передавать по радио изображение. Судьба была неблагосклонна к нему, он не смог получить основательного образования, но имел хорошие руки и светлую голову. Перебравшись из родного штата в Калифорнию, он уговорил нескольких банкиров ссудить ему денег на создание телевизионной системы. В 1927 году молодой изобретатель разработал передающую электронно-лучевую трубку "анализатор изображения" (image dissector), которую он присоединил к уже существовавшему приемному устройству и пригласил банкиров посмотреть чудо телевидения. Все, что они увидели, было слабое изображение треугольника на светлом фоне. Банкиры не пришли в восторг: они вложили в дело большие деньги и хотели знать, когда они смогут продавать систему и получать прибыль. "Мы когда-нибудь увидим на экране хотя бы доллар?" - спросил один из них. Через несколько месяцев Фарнсуорт показал им четкое изображение доллара, а еще позже - кинематографическую версию шекспировской пьесы "Укрощение строптивой".

В 1930 году к Фарнсуорту приехал Зворыкин. Хозяин продемонстрировал гостю свой анализатор, и тот, к большому удовольствию автора, признал его превосходным. Однако впоследствии, когда Фарнсуорт ознакомился с иконоскопом, он нашел в себе мужество признать, что разработка Зворыкина была лучше, чем его собственная: анализатор не накапливал заряд, при очень хорошей освещенности изображение было прекрасным, но по чувствительности анализатор значительно уступал иконоскопу. Тем не менее, корпорация RCA, видя в Фарнсуорте конкурента, предложила ему продать ей его патентные права. Фарнсуорт был зажат в долговых тисках и пошел на продажу лицензии. Обе передающие трубки применялись в телевизионных системах еще долго, до создания более совершенных устройств: иконоскоп – в передачах кинофильмов, анализатор – в промышленном телевидении.


Радиовизионный передатчик. Передачи BBS

В 1928 году продемонстрировала “радиовизионный” передатчик W3XK и фирма Jenkins Laboratories, основанная переехавшим из Англии Дженкинсом: 2 июля начались первые регулярные передачи “радиофильмов” на города Восточного побережья США. В том же году в Германии Нипков осуществил первую передачу изображения по проводам, а еще через два года на выставке в Берлине изобретатель обошелся без них.

Однако жители Великобритании еще долго хранили верность Бэйрду. В 1928 году он провел первую трансатлантическую телевизионную передачу, в сентябре следующего начала регулярные телепередачи, вещательная корпорация ВВС, используя, передатчики Бэйрда. Телевидение признали быстро.

Разработка телевидения в СССР

Еще одна страна с самого начала очень серьезно отнеслась к новому СМИ - СССР. Почему, объяснять не нужно. И если говорить только о технической стороне дела, то советское телевидение долгое время шло вровень с наиболее передовым западным. Начать с того, что менее чем за два месяца до получения Зворыкиным патента на иконоскоп аналогичную заявку (“на трубку с трехслойной мишенью и накоплением зарядов”) в СССР подал инженер С.И. Катаев, впоследствии - один из ведущих советских специалистов в этой области. И хотя приоритет остался за Зворыкиным, чьи заслуги перед телевидением не подвергали сомнению и у него на родине, этот факт доказывает, что мысль ученых разных стран двигалась параллельно. Кстати, до середины 1930-х годов Зворыкин поддерживал тесные контакты с коллегами на родине - с тем же С. Катаевым, С. Векшинским, Л. Кубецким, А. Шориным и другими. Удивительно другое: авторы некоторых публикаций утверждают, что «отец телевидения» даже сам побывал в Москве в 1933 году, читал лекции и лично общался, в частности с Катаевым. Но затем такое сотрудничество было по понятным причинам свернуто. Вначале советское телевидение было «малострочным» (имеется в виду количество строк развертки), а, кроме того, механическим, с использованием тех же дисков Нипкова. Кроме того, даже после того, как в конце 1931 года началось опытное вещание из Москвы, поступавшая из студии картинка не всегда сопровождалась звуком. Затем начался период так называемого малокадрового электронного телевидения, заметно улучшившего качество изображения. Впервые идею предложил в 1936 году тот же Катаев, и много позже, в 1959-м, с помощью его метода удалось добиться сенсационного успеха: получить снимки обратной стороны Луны.

Пока же, в конце 30-х, Москва обзавелась первым телецентром - его построили на Шаболовке, рядом со знаменитой радиобашней Шухова. На ее вершине советские специалисты установили передающую антенну УКВ-передатчиков изображения и звука, а основное оборудование было закуплено заграницей. Поначалу Московский телецентр обладал единственной студией площадью 300 кв. м и единственной же камерой (фильмы передавали с помощью двух телекинокамер). В марте 1938 года состоялась первая пробная передача, и в новогоднюю ночь все работники центра могли разливать шампанское дважды: МТЦ был торжественно сдан в эксплуатацию. А уже в марте следующего года начались регулярные передачи.

Работы по усовершенствованию телевизионной техники не прекращались даже во время войны. Так, в 1940 году был разработан телевизионный стандарт на 441 строку, годом позже достигнут американский (525 строк), а в 1944 - рекордный 625-строчный. В октябре следующего года правительство приняло постановление перевести на него МТЦ. Реконструкцию осуществляло закрытое КБ во Фрязине, а помогали ему немецкие специалисты, недостатка в которых СССР в 1945 году не испытывал. 3 сентября 1948 года состоялась первая передача в новом стандарте, и впоследствии его приняли все страны с частотой питания в сети 50 герц.

Примерно в то же время был выпущен первый советский массовый телевизор – КВН-49 (первый опытный телевизионный приемник ТК-1 создали на Ленинградском заводе имени Козицкого еще в 1934-м), который народ тут же расшифровал как “купил, включил, не работает”. Объемам продаж КВНа в послевоенные годы могли бы позавидовать многие западные производители.

До появления спутников связи передача сигнала из Москвы в другие населенные пункты осуществлялась по кабельным или радиорелейным линиям связи. Однако использовали и более хитроумные средства, например, установку ретрансляторов на самолетах: именно так, в частности, передавали репортажи с фестиваля 1957 года в Ленинград, Смоленск, Киев и Минск.

Перспективы развития телевидения

В мире используют три системы цветного телевидения. Однако в Бразилии, например, наряду со стандартом М (525 строк) применяют видоизмененную систему PAL, отличающуюся от европейской значением цветовой под несущей. В Люксембурге и Монако телецентры работают по стандартам SECAM и PAL, во Вьетнаме - по системам NTSC и SECAM. В Бельгии, Голландии и других западноевропейских странах принята система PAL, но на территориях, где дислоцируются войска США, используется и система NTSC-M.

Применение стандартов разложения и систем цветного телевидения в регионах Земли показано в таблице. Следует иметь в виду, что в Китае и Индии, использующих систему PAL, проживает около 40 % всего населения планеты. Поэтому можно считать, что все три системы цветного телевидения примерно равнозначно применяются всеми странами мира.

Таблица 3
Регион Число стран/людей (млн.), использующих/принимающих в них
Стандарт разложения Систему цветного телевидения
625 525 SECAM PAL NTSC
Европа 40/730 16/370 25/360
Африка 50/610 24/205 26/405
Ближний и Средний Восток 19/200 9/120 10/80
Азия 24/2350 8/340 7/65 17/2474 8/340
Тихий океан 8/25 8/5 2/0,5 6/24 8/5
Северная Америка 2/0,2 4/280 1/0,1 1/0,1 4/280
Центральная Америка 2/1 26/149 2/1 26/150
Южная Америка 6/60 8/240 2/0,2 4/190 8/100
Итого 151/4156 54/1014 63/762 89/3533 54/875

Хотя в новых телевизорах качество изображения сейчас оценивается весьма высоко, спрос на них (основного источника доходов производителей телевизионного оборудования), случалось, не рос, а в отдельные периоды даже снижался. Надежды, что это положение изменится в связи с ростом числа принимаемых программ при внедрении кабельных и спутниковых распределительных сетей, к сожалению, не оправдались. Отчасти это объясняется увеличением платы за многопрограммность.

В свое время преобладало мнение, кстати, сохранившееся до наших дней, что привлечь телезрителей может только наибольшее подобие изображения передаваемым объектам съемки, повышение физиологического и эмоционального его воздействия. Одним из таких направлений, пока нереализованных, можно считать объемность (стереоскопичность). Наиболее удачной для ее реализации оказалась идея использования известных особенностей зрительного восприятия изображения. Основное его содержание воспринимается в пределах телесного угла 15x10° («изображение наблюдения»). Ему соответствует формат экрана 4:3, применяемый в телевидении, кино, живописи. Реальное же поле зрения существенно больше - 200x125°. Причем при наблюдении основного события в пределах узкого угла наличие изображения в большем угле создает впечатление стереоскопичности. Практически оно сохраняется при уменьшении его до значения 30x20°.

Другой особенностью восприятия изображения считается необходимое расстояние до экрана, которое должно быть не менее двух метров. При меньших расстояниях могут возникать головные боли, особенно от движущихся объектов.

Учитывая сказанное, минимальный размер телевизионного изображения должен быть 1x0,7 м. В результате в новых стандартах предусматривается увеличение числа строк разложения примерно вдвое (при формате изображения 16:9). Они получили название телевидения высокой четкости (ТВЧ или ТВВЧ). При этом в странах, где используется частота сети 50 Гц (Европа и др.), уже рекомендовано разложение на 1250 строк и 50 полей, а в странах, где частота сети равна 60 Гц (Америка, Япония и др.), - 1125 строк и 60 полей.

Разработка, испытание и частичное использование таких систем вещания, способов передачи и распределения их сигналов ведутся очень интенсивно. Причем в последнее время заметно стремление перейти на цифровые сигналы, позволяющие передавать в одном стандартном канале сигналы нескольких телевизионных программ и другой различной информации. Это будет способствовать также внедрению интерактивных систем, обеспечивающих потребителю получение по запросу интересующих его программ и другой информации.

Об интенсивности работ в этом направлении свидетельствует то, что в отдельные периоды последних лет в международных организациях изучалось до 40 предлагаемых новых стандартов телевидения: варианты систем телевидения повышенного качества, МАС, PAL-плюс и др. Следует сказать, что до начала их практического использования осталось совсем немного времени. Однако поиски новых идей, конечно, продолжаются.


Список литературы

1. В. Д. Крыжановский, Ю. В. Костыков: Телевидение цветное и черно-белое

2. www. referat. Ru


... ­ций звукозрительного ряда идет стреми­тельными темпами, буквально в геометрической прогрессии, «заглатывая» все новые и новые сферы действия естественного языка. Перспективы развития телевидения. Вначале - о благе телевидения, его новых горизонтах на рубеже двух веков. Именно этим были озабочены разработчики Федеральной целевой программы (ФЦП) развития телевидения на ближайшие годы. В...

Грузии в полном объеме и Казахстане, Украине в сокращенном объеме. Телевизионная программа "Первый канал", создаваемая общероссийской телерадиовещательной организацией - акционерным обществом "Общественное российское телевидение". Объем вещания 18,5 часа в сутки. Распространяется на территориях РФ и стран ближнего зарубежья. Охват населения России - около 99 процентов. Телевизионная...

На одежде, вкладыши в книги, телефонная реклама, телефакс, реклама на видеокассетах, на автоответчике, голограммы, через спутниковую связь. 3. ОСОБЕННОСТИ И ПЕРСПЕКТИВЫ РАЗВИТИЯ НА РОССИЙСКОМ РЫНКЕ 3.1 Дореволюционная отечественная реклама Уже во времена Киевской Руси в X-XI вв. купцы прибегали к услугам профессиональных глашатаев-зазывал. Их мастерство было настолько высоким, а...



... : – консолидация предприятий, организаций и учреждений, занятых обслуживанием туристов; – расширение спектра регионального турпродукта; – организация акций и мероприятий, содействующих развитию туризма в Курской области (выпуск проспектов, буклетов, появление информации о регионе в Интернете и туристских газетах и журналах; различные ярмарки и концертные программы); ...

Поделитесь с друзьями или сохраните для себя:

Загрузка...